- неравенство Коши
- Cauchy inequality
Русско-английский математический словарь. 2013.
Русско-английский математический словарь. 2013.
Неравенство Коши — Неравенство Коши Буняковского связывает норму и скалярное произведение векторов в евклидовом пространстве. Это неравенство эквивалентно неравенству треугольника для нормы. Неравенство Коши Буняковского иногда, особенно в иностранной… … Википедия
Неравенство Коши — Буняковского — Неравенство Коши Буняковского связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши … … Википедия
Неравенство Коши-Буняковского — связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши Буняковского иногда, особенно в иностранной… … Википедия
Неравенство Коши—Буняковского — связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши Буняковского иногда, особенно в иностранной… … Википедия
Неравенство Буняковского — Неравенство Коши Буняковского связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши Буняковского… … Википедия
Неравенство Шварца — Неравенство Коши Буняковского связывает норму и скалярное произведение векторов в линейном пространстве. Это неравенство эквивалентно неравенству треугольника для нормы в пространстве со скалярным произведением. Неравенство Коши Буняковского… … Википедия
Неравенство Йенсена — обобщает тот факт, что секущая графика выпуклой функции находится над графиком. Неравенство Йе … Википедия
Неравенство между средним арифметическим и средним геометрическим — Неравенство Коши (неравенство о средних) Для любых неотрицательных чисел верно неравенство: причем равенство достигается тогда и только тогда, когда . Выражение называется средним арифметическим, а … Википедия
Неравенство между средним геометрическим и средним арифметическим — Неравенство Коши (неравенство о среднем арифметическом и среднем геометрическом) Для любых неотрицательных чисел верно неравенство: причем равенство достигается тогда и только тогда, когда . Выражение называется средним арифметическим, а … Википедия
Неравенство Гёльдера — в функциональном анализе и смежных дисциплинах это фундаментальное свойство пространств . Содержание 1 Формулировка 2 Доказательство … Википедия
КОШИ НЕРАВЕНСТВО — 1) К. н. неравенство для конечных сумм, имеющее вид:.. Доказано О. Коши (A. Cauchy, ;1821); интегральный аналог Буняковского неравенство. 2) К. н. неравенство для модуля производной регулярной аналитич. функции в фиксированной точке акомплексной… … Математическая энциклопедия